EGC220 Class Notes 2/28/2023

Baback Izadi
Division of Engineering Programs
bai@engr.newpaltz.edu

Test 1:

- Number systems
- Convert any base to any base
- Quick conversion between base $2,4,8$, and 16
- Add, subtract, multiply in any base
- Logic gate implementation of a Boolean function
- Boolean properties and laws
- Simplification of Boolean algebra using Boolean laws
- Representing Boolean functions in terms of
- Sum of min-terms, product of max-terms, standard sum of products, standard product of sums, minimum sum of products, minimum product of sums
- Representing Boolean functions using all NAND or NOR gates.

Simplification using K-map (up to 5 variables)

- SOP, POS, Standard SOP and POS, Min. SOP and POS

Design of combinational circuits

Design Steps

- From the specification of the circuit, determine the number of inputs and outputs and assign a symbol to each.
- Derive a truth table, assigning inputs to the left and outputs to the right.
- Place all possible combination of inputs i.e all 0's to all 1's

Using the problem definition determine each output.

- If combinations are left without a specified output, mark them as don't cares.
- Simplify each output using K-map.
- Draw a circuit for each output per requirement ie. All NAND, all NOR, AND OR, OR - AND, XOR, etc.

All AnN NOR
Problem 1 Design a circuit that counts the number of 0 's present in 4 inputs, A, B, C and D. Its output is a multi-bit, representing that count in binary. For example, 0101 has two zeros and therefore the output should be a binary representing 2 .

$$
=A B C D+B C D+A C D+A B C+A B D
$$

c. Draw the corresponding all NAND and all NOR gates logic diagram for this circuit. Label all inputs and outputs. 1 ○ 0

$$
x=\bar{A} \bar{B} \bar{C} \bar{D} \quad y=\bar{A} \bar{B} D+\bar{A} B \bar{C}+\overline{A C D}
$$

$y=\pi M(0,7,11,13,14,15)+A \bar{B} \bar{C}+\bar{B} C \bar{D}+$

$\left.z=\frac{13}{13}, \sum_{m}\left(1,2 A, 7,8,11, \frac{a}{3}, 14\right), A \| N A N 1\right)$
$Z=\bar{A} \bar{B} \bar{C} D+\bar{A} \bar{B} C \bar{D}+\bar{A} B \bar{C} \bar{D}+\bar{A} B C D+A \bar{B} \bar{C} \bar{D}+A \bar{B} C D$

Problem 1

Design a circuit that counts the number of 0 's present in 4 inputs A, B, C and D. the input is BCD. Its output is a multi-bit, representing that count in binary. For example, 0101 has two zeros and therefore the output should be a binary representing 2 .
a. Write the truth table for this circuit.
b. Find the minimized logic equations in SOP and POS for each output
c. Draw the corresponding all NAND and all NOR gates logic diagram for this circuit. Label all inputs and outputs.

3. Design a circuit that can convert a BCD code into a Gray. a. Write the truth table for this circuit. b. Find the minimized logic equations in SOP and POS for each output c. Draw the corresponding all NAND and all NOR gates logic diagram for this circuit. Label all inputs and outputs.

Bune J J
ckty to convert 2 bit binary ta gray gob

$A B$	$x y$	
00	00	0
01	01	$x=A$
10	11	1
11	10	
11	$y=A \oplus B$	

aray Gde te biuna

$$
\begin{array}{cc|cc}
x & y & A B \\
\hline 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0
\end{array}
$$

$$
A=X
$$

$$
B=x \oplus y \left\lvert\, \begin{array}{ll}
& 111 \\
G=A
\end{array} 10\right.
$$

$$
\mathrm{BCD} \rightarrow \mathrm{GRAY}
$$

$$
\begin{aligned}
& \text { GRAY } \rightarrow B C D \\
& \begin{array}{l|l}
\text { GREY } & A B C D \\
\hline 0000 & 0002 \\
0001 & 0001
\end{array} \\
& A=\operatorname{sm}(\quad) \\
& B=\operatorname{sm}(-\quad)
\end{aligned}
$$

| $A B C D$ | $W X y z$ |
| :---: | :---: | :---: |
| 0000 | 0000 |
| 0001 | 0001 |
| 0010 | 0011 |
| 0011 | 0010 |
| 0100 | 0110 |
| 0101 | 0111 |
| 0110 | 0101 |
| 0111 | 0100 |
| 1000 | 1100 |
| 1001 | 1101 |
| 1010 | 1111 |
| 1011 | 1110 |
| 1100 | 1010 |
| 1101 | 1011 |
| 1110 | 1001 |
| 1111 | 1000 |

